If it's not what You are looking for type in the equation solver your own equation and let us solve it.
=16Y^2+72Y+5
We move all terms to the left:
-(16Y^2+72Y+5)=0
We get rid of parentheses
-16Y^2-72Y-5=0
a = -16; b = -72; c = -5;
Δ = b2-4ac
Δ = -722-4·(-16)·(-5)
Δ = 4864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4864}=\sqrt{256*19}=\sqrt{256}*\sqrt{19}=16\sqrt{19}$$Y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-72)-16\sqrt{19}}{2*-16}=\frac{72-16\sqrt{19}}{-32} $$Y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-72)+16\sqrt{19}}{2*-16}=\frac{72+16\sqrt{19}}{-32} $
| 6g−-16=34 | | -6+3(2x)=16 | | w+11/6=5 | | x^2+5x-130=0 | | 6(3q-2)=3 | | 2q+42=80 | | h/4+14=17 | | | | | | n/4-1=4 | | 5(w+6)-8w=27 | | -3y+71=0 | | 18=16-x | | 2w−9=1 | | 3s-2=13 | | 2=34/u | | 8(w+2)=3w-19 | | 13+n=28 | | 3^4x+1=60 | | -7x+3(x-8)=-4 | | 5+14n=9n-5 | | 9x+119=398 | | -31+3x=26 | | 30-3-5=2x+3x+2x-8x | | 0.18x=0.054 | | -2y-3=9 | | 5x-22=88 | | -16t^2+48t+60=0 | | -154+8x=54 | | 9x=351 | | 8=4t-3 | | -121+9x=59 |